Redox Behavior of Anticancer Chalcone on a Glassy Carbon Electrode and Evaluation of its Interaction Parameters with DNA

نویسندگان

  • Afzal Shah
  • Asad M. Khan
  • Rumana Qureshi
  • Farzana L. Ansari
  • Muhammad F. Nazar
  • Syed S. Shah
چکیده

The interaction of anticancer chalcone [AMC, 1-(4'-aminophenyl)-3-(4-N,N-dimethylphenyl)-2-propen-1-one] with DNA has been explored using electrochemical, spectroscopic and viscometric techniques. A shift in peak potential and decrease in peak current were observed in cyclic voltammetry and hypochromism accompanied with bathochromic shift were noticed in UV-Vis absorption spectroscopy. These findings were taken as evidence for AMC -DNA intercalation. A binding constant (K) with a value of 6.15 x 10(5) M(-1) was obtained from CV data, which was also confirmed by UV-Vis absorption titration. Moreover, the diffusion coefficient of the drug with and without DNA (D(b) and D(u)), heterogeneous electron transfer rate constant (k(o)) and electron affinity (A) were also calculated from electrochemical data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ELECTROCHEMICAL AND THERMODYNAMIC ESTIMATIONS OF THE INTERACTION PARAMETERS FOR BULK AND NANO-SILVER NITRATE (NSN) WITH CEFDINIR DRUG USING A GLASSY CARBON ELECTRODE

The redox behavior for bulk and nano silver nitrate (NSN) were studied by cyclic voltammetry technique in absence and presence of cefdinir antibiotic (CFD) using glassy carbon electrode (GCE) in 0.1 M KNO3 as supporting electrolyte at two different temperatures. Scan rates were studied for the redox reactions of bulk and nano silver nitrate (NSN) in absence and presence of cefdinir antibiotic (...

متن کامل

Cyclic voltammetry of bulk and nano manganese sulfate with Doxorubicin using glassy Carbon electrode

The cyclic voltammetry of both bulk manganese sulfate (BMS) and nano manganese sulfate (NMS) were studied using 0.1M KCl supporting electrolyte and glassy carbon working electrode. The redox behavior for both bulk (BMS) and MnSO4 (NMS) sulfate was studied voltammetrically in presence and absence of Doxorubicin (DR) using three electrodes system, silver- silver chloride (Ag/AgCl), pla...

متن کامل

Electrochemical Oxidation of Flavonoids and Interaction with DNA on the Surface of Supramolecular Ionic Liquid Grafted on Graphene Modified Glassy Carbon Electrode

The study of the interaction between DNA and small molecules such as drugs is one of the current general interest and importance. In this paper, the electrochemical investigation of the interaction between some flavonoids such as rutin, quercetin, and hesperidin with dsDNA on the surface of Supramolecular Ionic Liquid grafted on the Graphene Oxide Modified Glassy Carbon Electrode (</s...

متن کامل

Cyclic voltammetry of bulk and nano manganese sulfate with Doxorubicin using glassy Carbon electrode

The cyclic voltammetry of both bulk manganese sulfate (BMS) and nano manganese sulfate (NMS) were studied using 0.1M KCl supporting electrolyte and glassy carbon working electrode. The redox behavior for both bulk (BMS) and MnSO4 (NMS) sulfate was studied voltammetrically in presence and absence of Doxorubicin (DR) using three electrodes system, silver- silver chloride (Ag/AgCl), pla...

متن کامل

Cyclic Voltammetry of Cobalt Chloride with L- Carrageenan (LK) Using Glassy Carbon Electrode

The redox behavior cobalt chloride was studied voltammetrically in presence and absence of L- Carrageenan (LK) natural polymer using glassy carbon electrodes in 0.1 M KCl supporting electrode. Scan rates are studied for the redox behaviors for CoCl2 alone or in presence of L- Carrageenan (LK) natural polymer. Stability constants for the interaction of cobalt ions with L - Carageenan (LK) natura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International Journal of Molecular Sciences

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008